English | NanjingTech | Contact
学科带头人    
  学科带头人   
  人才计划   
  专任师资   
  博士后   

黄维 ▍HUANG Wei
 添加时间:2023/09/10 发布: 管理员
二维码

扫描二维码,在手机中查看。

个人简历——黄维院士

AA11C


个人简介

黄 维,汉族,中共党员,中国科学院院士、俄罗斯科学院外籍院士、美国国家工程院外籍院士。有机电子、塑料电子、生物电子、印刷电子、能源电子、健康电子、智能电子和柔性电子领域专家。有机电子与信息显示国家重点实验室主任,国家柔性电子基础(前沿)科学中心首席科学家。国家重要计划特聘专家,教育部“国家重要人才”特聘教授,国家“杰出青年科学基金”获得者,国家“973”项目首席科学家,国家重点研发计划首席科学家,国家变革性技术专项首席科学家,国家哲学社会科学重大招标项目首席专家。中国科学技术协会旗舰期刊——Research创刊主编、自然出版集团合作期刊——npj Flexible Electronics(《柔性电子》)主编。亚太地区工程组织联合会(FEIAP)主席、世界工程组织联合会执行委员兼主席高级顾问。俄罗斯科学院、英国谢菲尔德大学、南非约翰内斯堡大学名誉博士,英国皇家化学会、美国光学学会、国际光学工程学会、新加坡化学会会士。获得两项国家自然科学奖二等奖、四项教育部高等学校科学研究优秀成果奖(科学技术)自然科学奖一等奖、一项何梁何利“科技进步奖”、六项江苏省科学技术奖、三项中国电子学会自然科学奖一等奖、中国石油和化学工业联合会科学技术奖(科技进步奖)一等奖及中国光学学会科技创新奖(自然科学奖)一等奖,成果两次入围“中国高等学校十大科技进展”和“中国半导体十大研究进展”等。


科学研究

黄维院士是国际上最早一批从事柔性电子、特别是有机电子、塑料电子和生物电子研究并长期活跃在柔性电子学领域的世界顶尖学者。从九十年代初开始,就致力于跨物理、化学、材料、电子、信息、力学、化工、生命和医学等多个学科交叉融合发展起来的有机电子学、塑料电子学、生物电子学、印刷电子学、能源电子学、健康电子学、智能电子学和柔性电子学等科学技术前沿领域研究。在构建有机电子学、塑料电子学、生物电子学和柔性电子学等学科的理论体系框架、实现有机半导体的高性能化与多功能化、推进科技成果转化与产业化方面做了大量富有开拓性、创新性和系统性的研究工作,是中国有机电子、塑料电子和柔性电子等学科的奠基人与开拓者,被业界誉为“柔性电子学之父”。在柔性电子学领域,以主要作者身份在NatureScience等顶级学术期刊发表研究论文1000余篇,h因子为195,国际同行引用逾20万次,是科瑞唯安(全球顶尖科技论文数据库)物理、化学与材料学科全球高被引学者,获授权与公开美国、新加坡和中国等国发明专利1000余项,出版了《有机电子学》《生物光电子学》《有机半导体存储器》《有机薄膜晶体管材料器件和应用》《有机光电子材料在生物医学中的应用》《OLED显示技术》《产业元宇宙》《柔性电子封装和封装技术》等学术专著。


学术兼职

亚太地区工程组织联合会(FEIAP)主席、世界工程组织联合会执行委员兼主席高级顾问、中国科学院信息技术科学部常委、国家科技奖励评审委员会委员、国家杰出青年科学基金评审委员会委员、国家自然科学基金委员会信息科学部专家评审组成员、国家自然科学基金委员会化学科学部专家咨询委员会委员、国务院学位委员会学科评议组成员、中国科学技术协会常委、教育部科学技术委员会委员、教育部教学指导委员会(材料科学类、电子信息类)副主任委员、工业和信息化部通信科学技术委员会常委、工业和信息化部电子科学技术委员会常委、陈嘉庚信息技术科学奖评奖委员会副主任、中国电子学会副理事长、中国化学会副理事长、中国化工学会副理事长、中国管理科学学会副会长、中国产学研促进会副会长、中国职业技术教育学会副会长、中国侨联特聘专家委员会副主任、中国欧美同学会常务理事、陕西省归国华侨联合会名誉主席、陕西省欧美同学会副会长、西安市归国华侨联合会名誉主席、江苏省政协委员、江苏省科学技术协会副主席、江苏省归国华侨联合会副主席、江苏省侨界专家委员会主任、江苏省化学化工学会理事长、江苏省高等教育学会副理事长、江苏省青年联合会副主席、 南京市政协常委兼教科文卫委员会主任、南京市侨联主席、南京市欧美同学会(归国留学人员联谊会)会长、南京市海外联谊会常务副会长等社会职务;Researchnpj Flexible ElectronicsAdvanced MaterialsAdvanced Electronic Materials等国际权威学术杂志主编或(顾问)编委。新加坡国立大学、南洋理工大学、英国谢菲尔德大学、俄罗斯科学院、莫斯科国立大学、新加坡材料研究院、澳大利亚伍伦贡大学、北京大学、中山大学、华中科技大学、南开大学、厦门大学、中南大学、华东理工大学、香港大学、香港城市大学、香港理工大学、香港浸会大学等高等学校科研院所名誉、客座或兼职教授。


人才培养

在海内外先后培养了包括1位美国国家工程院外籍院土、1位新加坡国家科学院院土、1位新加坡工程院院土,13位国家特聘专家、6位教育部特聘教授,12位国家“杰出青年科学基金”获得者,5位国家“973计划”项目首席科学家,6位教育部重要人才计划青年人才获得者,20位国家青年特聘专家,22位国家“优秀青年科学基金”获得者,2位“青年973计划”项目首席科学家,8位国家重要人才计划领军人才与青年拔尖人才。


近期代表作(2014-至今)

1. Efficient metal free organic radical scintillators, Nature Communications 15: 8181, 2024.

2. Matrix-induced defects and molecular doping in the afterglow of SiO2 microparticles, Nature Communications 15: 8111, 2024.

3. Intrinsically stretchable fully π-conjugated polymer film via fluid conjugated molecular external-plasticizing for flexible light-emitting diodes, Nature Communications 15: 7990, 2024.

4. Wedging crystals to fabricate crystalline framework nanosheets via mechanochemistry, Nature Communications 15: 6973, 2024.

5. C-H-activated Csp2-Csp3 diastereoselective gridization enables ultraviolet-emitting stereo-molecular nanohydrocarbons with mulitple H···H interactions, Nature Communications 15: 5438, 2024.

6. Wedging crystals to fabricate crystalline framework nanosheets via mechanochemistry, Nature Communications 15: 6973, 2024.

7. Acceleration of radiative recombination for efficient perovskite LEDs, Nature, 2024.

8. Stretchable phosphorescent polymers by multiphase engineering, Nature Communications 15: 4113, 2024.

9. Boosting organic phosphorescence in adaptive host-guest materials by hyperconjugation, Nature Communications 15: 3660, 2024.

10. A bionic self-driven retinomorphic eye with ionogel photosynaptic retina, Nature Communications 15: 3086, 2024.

11. Abnormal thermally-stimulated dynamic organic phosphorescence, Nature Communications 15: 2134, 2024.

12. Spin coating epitaxial heterodimensional tin perovskites for light-emitting diodes, Nature Nanotechnology 19, 632–637, 2024.

13. Full-color persistent room temperature phosphorescent elastomers with robust optical properties, Nature Communications 14: 8, 2023.

14. Additive treatment yields high-performance lead-free perovskite light-emitting diodes, Nature Photonics 17 (9): 755-760, 2023.

15. Monolithically-grained perovskite solar cell with Mortise-Tenon structure for charge extraction balance, Nature Communications 14: 3216, 2023.

16. Conformation-dependent dynamic organic phosphorescence through thermal energy driven molecular rotations, Nature Communications 14: 627, 2023.

17. Multicolor hyperafterglow from isolated fluorescence chromophores, Nature Communications 14: 475, 2023.

18. 2D titanium carbide printed flexible ultrawideband monopole antenna for wireless communications, Nature Communications 14: 278, 2023.

19. Perovskite solar cells based on screen-printed thin films, Nature 612 (7939): 266-271, 2022.

20. Organic phosphorescent nanoscintillator for low-dose X-ray-induced photodynamic therapy, Nature Communications 13: 5091, 2022.

21. Co-assembled perylene/graphene oxide photosensitive heterobilayer for efficient neuromorphics, Nature Communications 13: 4996, 2022.

22. Ultralong organic phosphorescence from isolated molecules with repulsive interactions for multifunctional applications, Nature Communications 13: 4890, 2022.

23. Room-temperature epitaxial welding of 3D and 2D perovskites, Nature Materials 21: 1042-1049, 2022.

24. Organic phosphorescent scintillation from copolymers by X-ray irradiation, Nature Communications 13: 3995, 2022.

25. Approaching intrinsic dynamics of Mxenes hybrid hydrogel for 3D printed multimodal intelligent devices with ultrahigh superelasticity and temperature sensitivity, Nature Communications 13: 3420, 2022.

26. Single-component color-tunable circularly polarized organic afterglow through chiral clusterization, Nature Communications 13: 429, 2022.

27. Unveiling the additive-assisted oriented growth of perovskite crystallite for high performance light-emitting diodes, Nature Communications 12: 5081, 2021.

28. Confining isolated chromophores for highly efficient blue phosphorescence, Nature Materials 20 (11): 1539-1544, 2021.

29. WS2 moiré superlattices derived from mechanical flexibility for hydrogen evolution reaction, Nature Communications 12: 5070, 2021.

30. Ladder-like energy-relaying exciplex enables 100% internal quantum efficiency of white TADF-based diodes in a single emissive layer, Nature Communications 12: 3640, 2021.

31. Wide-range lifetime-tunable and responsive ultralong organic phosphorescent multi-host/guest system, Nature Communications 12: 3522, 2021.

32. Full-frame and high-contrast smart windows from halide-exchanged perovskites, Nature Communications 12: 3360, 2021.

33. Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity, Science 371 (6536): 1359-1364, 2021.

34. Efficient and bright warm-white electroluminescence from lead-free metal halides, Nature Communications 12: 1421, 2021.

35. Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence, Nature Photonics 15 (3), 2021.

36. Two-dimensional ruddlesden-popper layered perovskite solar cells based on phase-pure thin films, Nature Energy 6, 38–45, 2021.

37. Self-templated synthesis of uniform hollow spheres based on highly conjugated three-dimensional covalent organic frameworks, Nature Communications 11: 5561, 2020.

38. Design of highly efficient deep-blue organic afterglow through guest sensitization and matrices rigidification, Nature Communications 11: 4802, 2020.

39. Stereoselective gridization and polygridization with centrosymmetric molecular packing, Nature Communications 11: 1756, 2020.

40. Organocatalytic asymmetric N-sulfonyl amide C-N bond activation to access axially chiral biaryl amino acids, Nature Communications 11: 946, 2020.

41. Organocatalytic asymmetric N-sulfonyl amide C-N bond activation to access axially chiral biaryl amino acids, Nature Communications 11: 946, 2020.

42. Color-tunable ultralong organic room temperature phosphorescence from a multicomponent copolymer, Nature Communications 11: 944, 2020.

43. Thermally activated triplet exciton release for highly efficient tri-mode organic afterglow, Nature Communications 11: 842, 2020.

44. Dual-functional perovskite diodes enabling bidirectional optical signal transmission between two identical devices, Nature Electronics 3: 156-164, 2020.

45. Efficient and stable Ruddlesden-Popper perovskite solar cell with tailored interlayer molecular interaction, Nature Photonics 14: 154–163, 2019.

46. Enabling long-lived organic room temperature phosphorescence in polymers by subunit interlocking, Nature Communications 10: 4247, 2019.

47. Stable and bright formamidinium-based perovskite light-emitting diodes with high energy conversion efficiency, Nature Communications 10: 3624, 2019.

48. Colour-tunable ultra-long organic phosphorescence of a single-component molecular crystal, Nature Photonics 13: 406-411, 2019.

49. Rational molecular passivation for high-performance perovskite light-emitting diodes, Nature Photonics 13: 418–424, 2019.

50. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures, Nature 562: 249–253, 2018.

51. Realization of vertical metal semiconductor heterostructures via solution phase epitaxy, Nature Communications 9: 3611, 2018.

52. All-inorganic perovskite nanocrystal scintillators, Nature 561: 88-93, 2018.

53. Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes, Nature Communications 9: 608, 2018.

54. Dynamic metal-ligand coordination for multicolour and water-jet rewritable paper, Nature Communications 9: 3, 2018.

55. Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers, Nature Communications 8: 543, 2017.

56. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence, Nature Communications 8: 14558, 2017.

57. Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water, Nature Communications 7: 13059, 2016.

58. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells, Nature Photonics 10: 699–704, 2016.

59. Encapsulation of sulfur with thin-layered nickel-based hydroxides for long-cyclic lithium-sulfur cells, Nature Communications 6: 8622, 2015.

60. Stabilizing triplet excited states for ultralong organic phosphorescence, Nature Materials 14 (7): 685-690, 2015.

61. Temporal full-colour tuning through non-steady-state upconversion, Nature Nanotechnology 10 (3): 237-242, 2015.

62. Smart responsive phosphorescent materials for data recording and security protection, Nature Communications 5: 3601, 2014.




Copyright © 2017-2019 南京工业大学先进材料研究院 All rights reserved.

官方微信
地址:南京市新模范马路5号138信箱 总共访问:   [旧版回顾]
电话: 025-83587982